Satellite Symposium at ESH 7th Translational Research Conference – BeiGene 21 October 2023, 13:00-14:00 WEST Estoril, Portugal

"Working towards precision medicine approaches for CLL"

Working towards precision medicine approaches for CLL

Chair & Moderator

Raul Cordoba, MD, PhD, MSc University Hospital Fundacion Jimenez Diaz Madrid, Spain

Disclosures

• Research funding: Pfizer

- •Advisory boards: Janssen, Abbvie, Astra Zeneca, Lilly, Beigene, Gilead, Takeda, Incyte, Roche, Regeneron, BMS, Kyowa-Kirin
- **Speakers' bureau**: Janssen, Abbvie, Astra Zeneca, Beigene, Lilly, Gilead, Takeda, Incyte, Roche

Disclaimers

- The views expressed are those of the speakers and may not necessarily reflect the opinion of BeiGene.
- The following presentation may include data on non-approved indications.
- <u>Zanubrutinib</u> ▼* as monotherapy is indicated in the European Union for the treatment of adult patients with:
 - Waldenström's macroglobulinaemia (WM) who have received at least one prior therapy, or in first-line treatment for patients unsuitable for chemoimmunotherapy
 - Chronic lymphocytic leukaemia (CLL)
 - Marginal zone lymphoma (MZL) who have received at least one prior anti-CD20-based therapy

Indications may differ outside of the European Union. Prescribing information may vary depending on local approval in each country. Consult the zanubrutinib prescribing information for the country you practice medicine in for country-specific information.

- <u>Acalabrutinib</u> ▼* is used on its own (monotherapy) in patients with CLL who have had previous treatment. In patients who have not had previous treatment for the condition, acalabrutinib may be used on its own or combined with obinutuzumab.
- Lisocabtagene maraleucel ▼*
- Obinutuzumab is used together with chlorambucil in patients for whom the cancer medicine fludarabine is not recommended.
- <u>Ofatumumab</u> ▼*
- <u>Venetoclax</u> can be used on its own in: 1) patients with particular genetic changes (17p deletion or TP53 mutation) who cannot be treated with medicines known as B-cell receptor pathway inhibitors (ibrutinib and idelalisib) or if these medicines have stopped working; 2) patients who do not have these genetic changes, after treatments with chemotherapy combined with immunotherapy as well as a B-cell receptor pathway inhibitor have both not worked.
 <u>Venetoclax</u> can be used with obinutuzumab in patients who have not previously been treated for CLL. <u>Venetoclax</u> can be used with rituximab in patients who have not previously been treated for CLL. <u>Venetoclax</u> can be used with rituximab in patients who have not previously been treated for CLL. <u>Venetoclax</u> can be used with rituximab in patients who have not previously been treated for CLL. <u>Venetoclax</u> can be used with rituximab in patients who have not previously been treated for CLL. <u>Venetoclax</u> can be used with rituximab in patients.

* This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions.

After this session, participants will understand:

- The contemporary treatment landscape for CLL
- How to make individualized treatment choices, especially guided by patient and disease characteristics
- The molecular mapping of CLL and its impact on treatment outcome

Chair and Speakers

Dr Raul Cordoba – University Hospital Fundacion Jimenez Diaz Madrid, Spain

Dr Alessandra Tedeschi – ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy

Prof Xose S. Puente – Universidad de Oviedo, Oviedo, Spain

Working towards precision medicine approaches for CLL

Timing (60 minutes)	Торіс	Speaker
13.00 – 13.05 h (5 mins)	Welcome & introduction	Raul Cordoba (chair)
13.05 – 13.30 h (25 mins)	Contemporary treatment of CLL – Treatment selection based on patient and disease characteristics	Alessandra Tedeschi
13.30 – 13.45 h (15 mins)	Molecular mapping of CLL and its impact on outcome	Xose Puente
13.45 – 14.00 h (15 mins)	Audience Q&A	Faculty
	Closure & farewell	Raul Cordoba (chair)

Introducing our first Speaker...

Contemporary treatment of CLL – Treatment selection based on patient and disease characteristics

Alessandra Tedeschi, MD, PhD ASST Grande Ospedale Metropolitano Niguarda Milan, Italy

•Honoraria: Janssen SpA, AbbVie, BeiGene, AstraZeneca

•Advisory boards: Janssen SpA, AbbVie, BeiGene, AstraZeneca, Lilly

• Speakers' bureau: Janssen SpA, AbbVie, BeiGene, AstraZeneca

CLL – many options, many questions

• Are we ready for personalized treatment in CLL?

• Do biological factors play a role in treatment decision?

• Do patient's age and fitness play a role in treatment decision?

• Do we have enough sequencing data?

- Is there is still a role for cellular therapy in CLL?
- What are the medical needs?

Factors influencing treatment choice*

Before the introduction of targeted agents (CIT)

Predictive factors:

Factors influencing treatment choice*

Before the introduction of targeted agents (CIT)

 Predictive factors:
 FIT

 - Age
 > Age

 - Fitness
 Surrogate of renal function:

 CrCl cut off 70 mL/min
 FRAIL

 No Go
 FRAIL

After the introduction of targeted agents

Disease factors	Patient factors	Other factors	
 Del(17p)/TP53 IGHV mutational status Bulky disease 	 Comorbidities Concomitant medications Age 	 Logistics/caregivers Patient preference Drug approvals/ reimbursement 	Fixed vs continuous therapy

*Speaker's own view.

CIRS, cumulative illness rating score, CIT, chemoimmunotherapy; CrCI, creatinine clearance; del(17p), deletion of the short arm of chromosome 17; *IGHV*, immunoglobulin heavy chain variable region gene; *TP53*, tumor protein p53. *Satellite Symposium sponsored by BeiGene.*

TN CLL patients: available options

Continuous therapy¹⁻¹¹

BTKi (+/- anti-CD20 antibody):

- Ibrutinib +/- rituximab

-▼Acalabrutinib +/- obinutuzumab

-▼Zanubrutinib

Time-limited therapy¹²⁻¹⁵

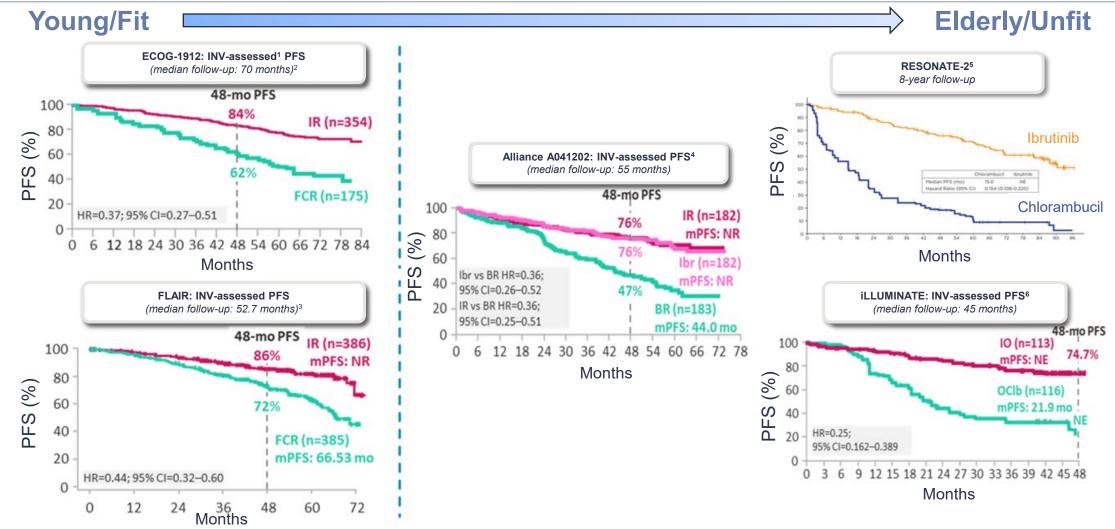
CIT: - *FCR*

BCL2i + anti-CD20 antibody: - Venetoclax + obinutuzumab

BCL2i + BTKi: - Venetoclax + ibrutinib

RCTs show similar 4-year PFS (approx. 75%) with either approach^{1-9,13-15} Depends on disease genetic characteristics

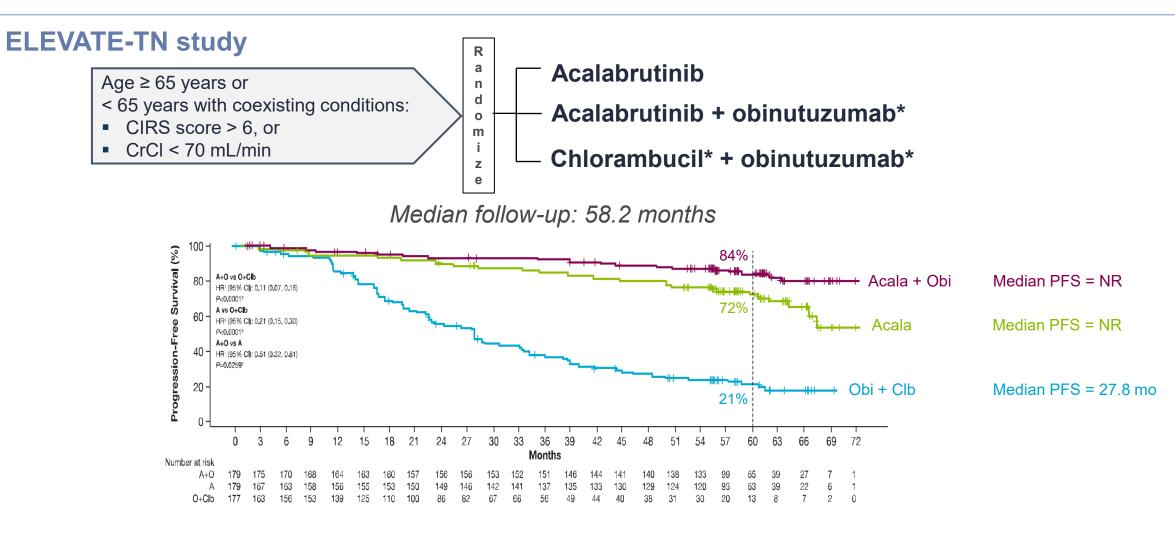
BCL2i, B-cell lymphoma-2 inhibitor; BTKi, Bruton's tyrosine kinase inhibitor; CD20, cluster of differentiation 20; CLL, chronic lymphocytic leukemia; CIT, chemoimmunotherapy; FCR, fludarabine, cyclophosphamide and rituximab; PFS, progression-free survival; RCT, randomized clinical trial; TN, treatment naïve.


1. Barr PM et al. Blood Adv. 2022;6(11):3440–3450; 2. Ahn IE et al. N Engl J Med. 2020;383:498-500; 3. Woyach JA et al. Blood. 2021;138(1):639–642; 4. Shanafelt TD et al. Blood. 2022;140(2):112–120; 5. Hillmen P et al. ASH 2021; Abstract 642; 6. Shanafelt TD et al. N Engl J Med. 2019;381:432–443; 7. Woyach JA et al. N Engl J Med. 2018;379:2517–2528; 8. Sharman JP et al. ASCO 2022; Poster 7539; 9. Hillmen P et al. EHA 2021; Abstract S145; 10. Tam CS et al. Lancet Oncology. 2022;23(8):1031–1043; 11. Brown JR et al. N Engl J Med. 2023;388:319–332; 12. Al-Sawaf O et al. EHA 2022; Abstract S148; 13. Eichhorst B et al. Blood. 2021;138(1):71; 14. Eichhorst B et al. EHA 2022; Abstract LB2365; 15. Kater AP et al. ASH 2020; Abstract 125.

BTKi continuous therapy: ibrutinib

15

1023--MRC-003 | October 2023


BR, bendamustine and rituximab; BTKi, Bruton's tyrosine kinase inhibitor; CI, confidence interval; CLL, chronic lymphocytic leukemia; FCR, fludarabine, cyclophosphamide and rituximab; HR, hazard ratio; Ibr, ibrutinib; INV, investigator; IO, ibrutinib and obinutuzumab; IR, ibrutinib and rituximab; mo, months; (m)PFS, (median) progression-free survival; NE, not evaluable; NR, not reached; OCIb, obinutuzumab and chlorambucil. Figures adapted from 1. Shanafelt TD et al. N Engl J Med. 2019; 381(5):432-443; 2. Shanafelt TD et al. Blood. 2022;140(2):112-120; 3. Hillmen P et al. ASH 2021; Abstract 642; 4. Woyach J et al. Blood. 2021;138(Suppl 1):639; 5. Barr PM et al. Blood Adv. 2022;6(11):3440-3450; 6. Moreno C et al. Haematologica. 2022;107(9):2108-2120. BeiGene

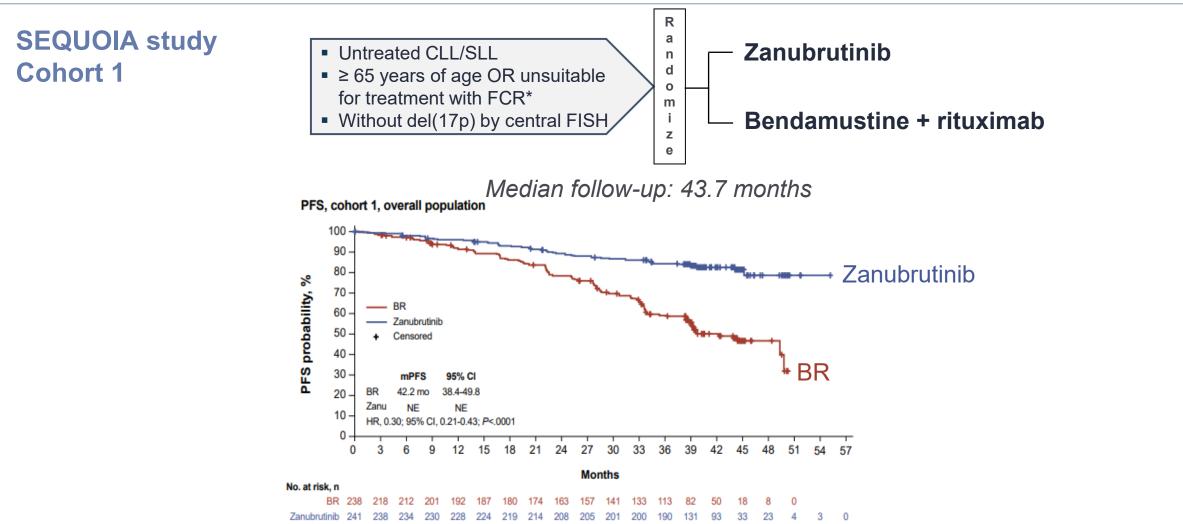
Satellite Symposium sponsored by BeiGene.

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

BTKi continuous therapy: acalabrutinib

*6 cycles.

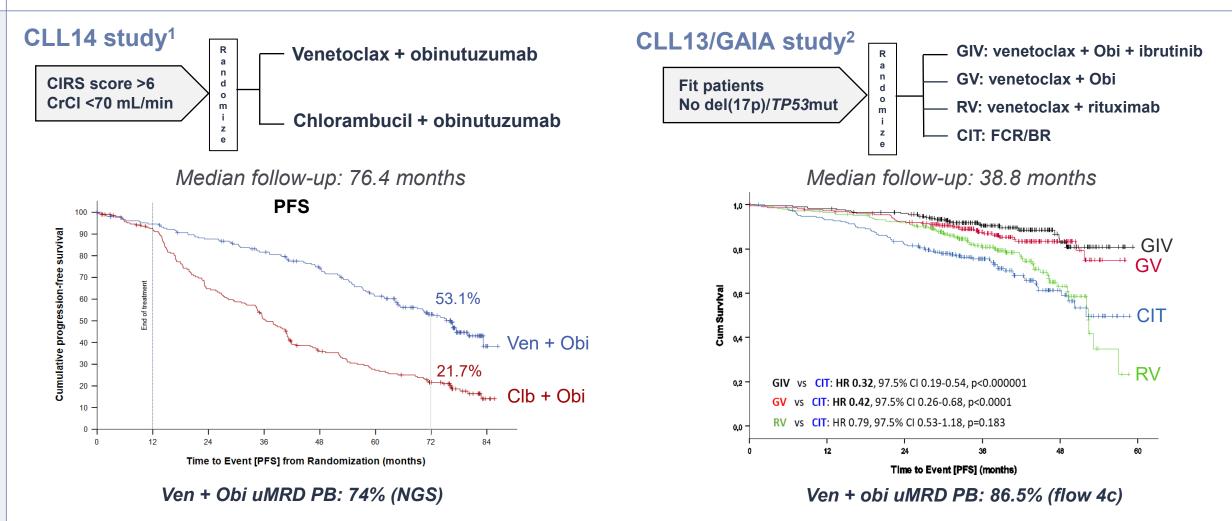
Acala, acalabrutinib; BTKi, Bruton's tyrosine kinase inhibitor; CI, confidence interval; CIRS, cumulative illness rating score, CLL, chronic lymphocytic leukemia; CrCl, creatinine clearance; Clb, chlorambucil; HR, hazard ratio; mo, months; NR, not reached; Obi, obinutuzumab; PFS, progression-free survival; TN, treatment naïve. Sharman JP et al. ASCO 2022; Poster 7539 (figure adapted).



BTKi continuous therapy: zanubrutinib

17

1023--MRC-003 | October 2023



*Defined as CIRS >6, CrCl <70 mL/min, or a history of previous severe infection or multiple infections within the last 2 years.

BR, bendamustine and rituximab; BTKi, Bruton's tyrosine kinase inhibitor; CI, confidence interval; CIRS, cumulative illness rating score, CLL, chronic lymphocytic leukemia; CrCl, creatinine clearance; del(17p), deletion of the short arm of chromosome 17; FCR, fludarabine, cyclophosphamide and rituximab; FISH, fluorescence in situ hybridization; HR, hazard ratio; mo, months; (m)PFS, (median) progression-free survival; NE, not evaluable; SLL, small lymphocytic leukemia; TN, treatment naïve. BeiGene

Munir T et al. EHA 2023; Abstract P639 (figure adapted).

Time-limited therapy: venetoclax + obinutuzumab

BR, bendamustine and rituximab; CI, confidence interval; CIRS, cumulative illness rating score, CLL, chronic lymphocytic leukemia; CrCl, creatinine clearance; Clb, chlorambucil; del(17p), deletion of the short arm of chromosome 17; FCR, fludarabine, cyclophosphamide and rituximab; flow 4c, four-color flow cytometry; GIV, venetoclax, obinutuzumab and ibrutinib; GV, venetoclax and obinutuzumab; HR, hazard ratio; mut, mutated; NGS, next-generation sequencing; NR, not reached; Obi, obinutuzumab; PB, peripheral blood; PFS, progression-free survival; RV, venetoclax and rituximab; SCIT, standard chemoimmunotherapy; TN, treatment naïve; *TP53*, tumor protein p53; uMRD, undetectable minimal residual disease.

1. Al Sawaf O et al. EHA 2023; Abstract S145 (figure adapted); 2. Eichhorst B et al. N Engl J Med. 2023;388(19):1739-54 (figure adapted). Satellite Symposium sponsored by BeiGene.

TN CLL

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

Time-limited therapy: venetoclax + ibrutinib

GLOW study¹: lbr + Ven vs Clb + Obi CAPTIVATE study² (FD cohort): lbr + Ven Patients \geq 65 years or unfit (no del[17p]) Patients ≤ 70 years 100 Progression-Free Survival (IRC) All patients 90 100 79% 80 90 lbr + Ven Treatment survival (%) Unmutated period 80 70 IGHV 60 70 73% PFS (%) 74.6% Del(17p)/TP53 60 50 63% -free 50 40 Clb + Obi Progression 40 30 24.8% del(17p)/TP53 Unmutated All treated mutation IGHV patients 30 20 n=27 n=89 N=159 20 End of End of 4-year PFS rate, % 63 73 79 10 (95% CI) (41 - 79)(62 - 81)(71 - 84)Clb + Obi lbr + Ven 10 0 HR 0.214 (95% CI, 0.138-0.334); p < 0.0001 6 12 18 24 30 36 42 48 0 0 Months 12 15 18 21 24 27 30 45 Patients at risk Months from date of randomization del(17p)/TP53 mutation 27 21 19 13 26 26 21 19 14 Patients at risk 85 85 79 79 73 72 59 58 Unmutated IGHV 89 Ibr+Ven 106 85 80 98 153 152 144 143 132 130 115 111 All treated patients 159 50 43 38 34 Clb+O 105 uMRD PB: 54.7% (NGS) uMRD PB: 57% (flow 8c) CLL14: Ven + Obi: 4-year PFS: 74% uMRD PB: 74% (NGS)

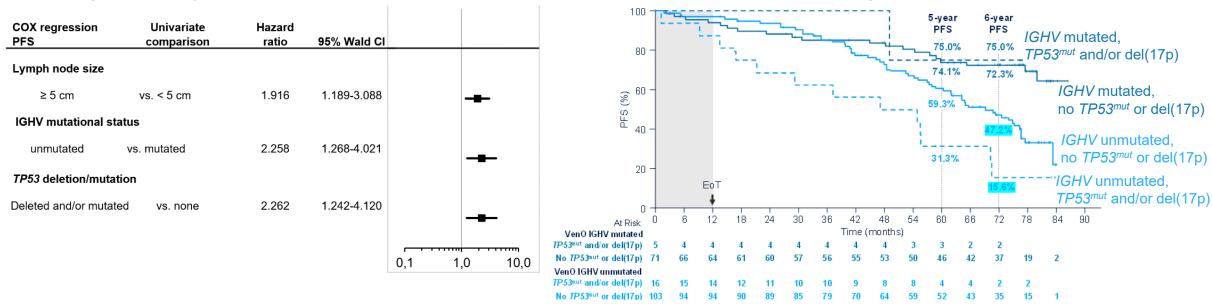
Cl, confidence interval; CLL, chronic lymphocytic leukemia; Clb, chlorambucil; del(17p), deletion of the short arm of chromosome 17; FD, fixed duration; flow 8c, eight-color flow cytometry; HR, hazard ratio; Ibr, ibrutinib; *IGHV*, immunoglobulin heavy chain variable region gene; IRC, independent review committee; mut, mutated; NGS, next-generation sequencing; Obi, obinutuzumab; PB, peripheral blood; PFS, progression-free survival; TN, treatment naïve; *TP53*, tumor protein p53; uMRD, undetectable minimal residual disease; Ven, venetoclax.

1. Niemann CU et al. ASH 2022; Abstract 642 (figure adapted); 2. Tedeschi A et al. EHA 2023; Poster P617 (figure adapted).

Satellite Symposium sponsored by BeiGene.

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

TN CLL Disease factors that may influence treatment choice (1/3)

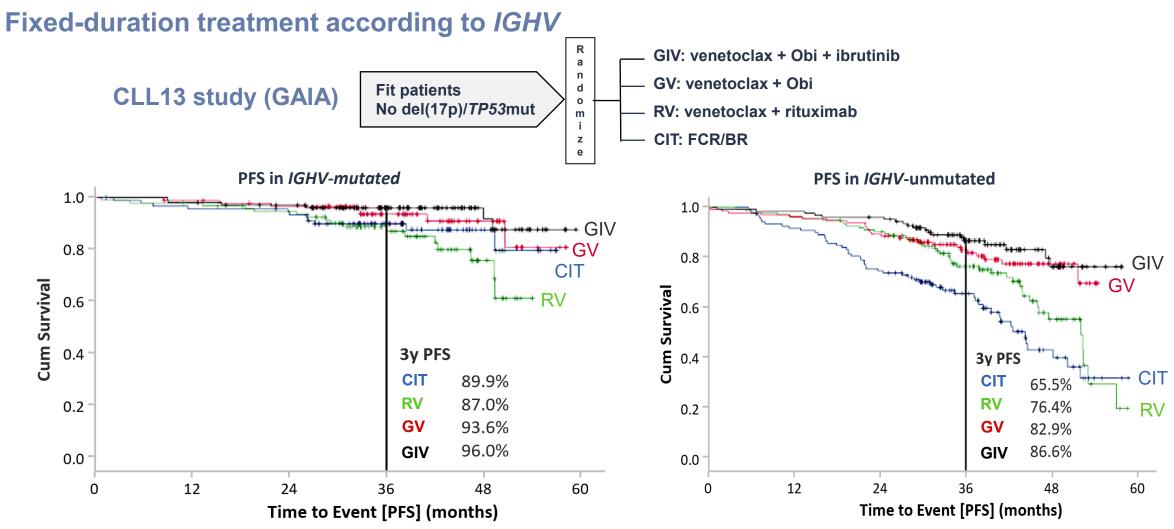

CLL14 study

In the context of venetoclax + obinutuzumab¹:

- max. lymph node size \geq 5 cm
- unmutated IGHV
- TP53 del/mutation

are independent negative prognostic factors for PFS

Negative prognostic factors for PFS¹

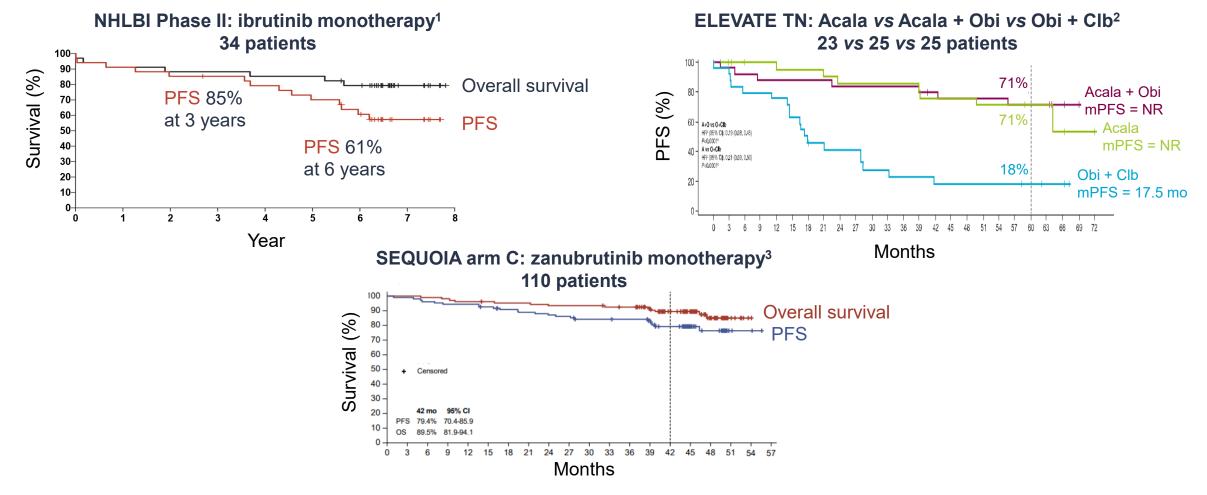


CI, confidence interval; CLL, chronic lymphocytic leukemia; del, deletion; del(17p), deletion of the short arm of chromosome 17; IGHV, immunoglobulin heavy chain variable region gene; Obi, obinutuzumab; PFS, progression-free survival; TN, treatment naïve; TP53, tumor protein p53; Ven, venetoclax. 1. Al Sawaf O et al. ICML 2023; Abstract 025 (figure adapted); 2. Al Sawaf O et al. EHA 2023; Abstract S145 (figure adapted). Satellite Symposium sponsored by BeiGene.

20 1023--MRC-003 | October 2023

Ven + Obi: PFS according to *IGHV* and del(17p)/*TP53*²

Disease factors that may influence treatment choice (2/3)



BR, bendamustine and rituximab; CLL, chronic lymphocytic leukemia; cum, cumulative; del(17p), deletion of the short arm of chromosome 17; FCR, fludarabine, cyclophosphamide and rituximab; GIV, venetoclax, obinutuzumab and ibrutinib; GV, venetoclax and obinutuzumab; *IGHV*, immunoglobulin heavy chain variable region gene; mut, mutated; Obi, obinutuzumab; PFS, progression-free survival; RV, venetoclax and rituximab; SCIT, standard chemoimmunotherapy; TN, treatment naïve; *TP53*, tumor protein p53; y, year. Eichhorst B et al. N Engl J Med. 2023;388(19):1739-54 (figures adapted). Satellite Symposium sponsored by BeiGene.

21 1023--MRC-003 | October 2023

Disease factors that may influence treatment choice (3/3)

BTKi in del(17p)/TP53

Acala, acalabrutinib; BTKi, Bruton's tyrosine kinase inhibitor; Chl, Chlorambucil; Cl, confidence interval; CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17; HR, hazard ratio; mo, months; (m)PFS, (median) progression-free survival; NR, not reached; Obi, obinutuzumab; TN, treatment naïve; *TP53*, tumor protein p53. Figures adapted from 1. Ahn IE et al. N Engl J Med. 2020;383(5):498–500; 2. Sharman JP et al. ASCO 2022; Abstract 7539; 3. Shadman M et al. EHA 2023; Abstract P639. Satellite Symposium sponsored by BeiGene.

22

1023--MRC-003 | October 2023

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

Patient factors influencing treatment choice

Comorbidities ¹		Concomitant medications ²⁻⁵		
BTKi Consider cardiovascular risk ¹ Consider	BCL2i er renal impairment	BTKi	BCL2i	
 BTKis NOT recommended for patients with: History of ventricular arrhythmia Family history of sudden cardiac death Severe, uncontrolled hypertension Severe or uncontrolled congestive heart failure (LVEF <30%) 	TLS risk	Consider: • Strong and modera • Strong CYP3A indu • P-gp inhibitors	te CYP3A inhibitors Icers	

BCL2i, B-cell lymphoma-2 inhibitor; BTKi, Bruton's tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; CYP3A, cytochrome P4503A; LVEF, left ventricular ejection fraction; P-gp, P-glycoprotein; TLS, tumor lysis syndrome; TN, treatment naïve.

1. Awan FT et al. Blood Adv. 2022;6(18):5516-25; 2. Zanubrutinib. Summary of Product Characteristics. Jul 2023; 3. Venetoclax. Summary of Product Characteristics. Feb 2023;

4. Acalabrutinib. Summary of Product Characteristics. Mar 2023; 5. Ibrutinib. Summary of Product Characteristics. Sep 2023.

Factors influencing treatment choice*

TN CLL

BTKi continuous therapy

- Easy to deliver
- No intensive early monitoring
- Oral treatment

Continuous treatment
 Resistance

Intensive early monitoring

Time-limited therapy

- Care-givers
- Intravenous therapy

- Patient preference
- Cost

***Speaker's own view.** BTK, Bruton's tyrosine kinase; CLL, chronic lymphocytic leukemia; TN, treatment naïve.

TN patient case

60-year-old male No concomitant medications/comorbidities No del(17p)/*TP53^{mut} IGHV*-mutated

TIME-LIMITED THERAPY TARGETED AGENT-BASED

Severe (≥ CTC Grade 3) AEs occurring in ≥5% of patients and AESI independent of incidence

	CIT	Ven + R	Ven + O	Ven + O + Ibr
All patients [SP]	216	237	228	231
Anemia	16 (7.4)	9 (3.8)	11 (4.8)	9 (3.9)
Neutropenia	113 (52.3)	109 (46.0)	127 (55.7)	112 (48.5)
Thrombocytopenia	22 (10.2)	10 (4.2)	42 (18.4)	37 (16.0)
Febrile neutropenia	24 (11.1)	10 (4.2)	7 (3.1)	18 (7.8)
Infections	43 (19.9)	27 (11.4)	32 (14.0)	51 (22.1)
Tumor lysis syndrome*	9 (4.2)	24 (10.1)	20 (8.8)	15 (6.5)
Bleeding events	1 (0.5)	1 (0.4)	1 (0.4)	4 (1.7)
Atrial fibrillation	1 (0.5)	1 (0.4)	0 (0.0)	6 (2.6)

*Including clinical and laboratory TLS according to Cairo-Bishop criteria

AEs, adverse events; AESI, adverse events of special interest; CIT, chemoimmunotherapy; CTC, common terminology criteria; del(17p), deletion of the short arm of chromosome 17; lbr, ibrutinib; mut, mutated; *IGHV*, immunoglobulin heavy chain variable region gene; n, number of patients; O, obinutuzumab; R, rituximab; TN, treatment naïve; TP53, tumor protein p53; Ven, venetoclax. Adapted from Eichhorst B et al. ASH 2021. *Satellite Symposium sponsored by BeiGene.*

TN patient case

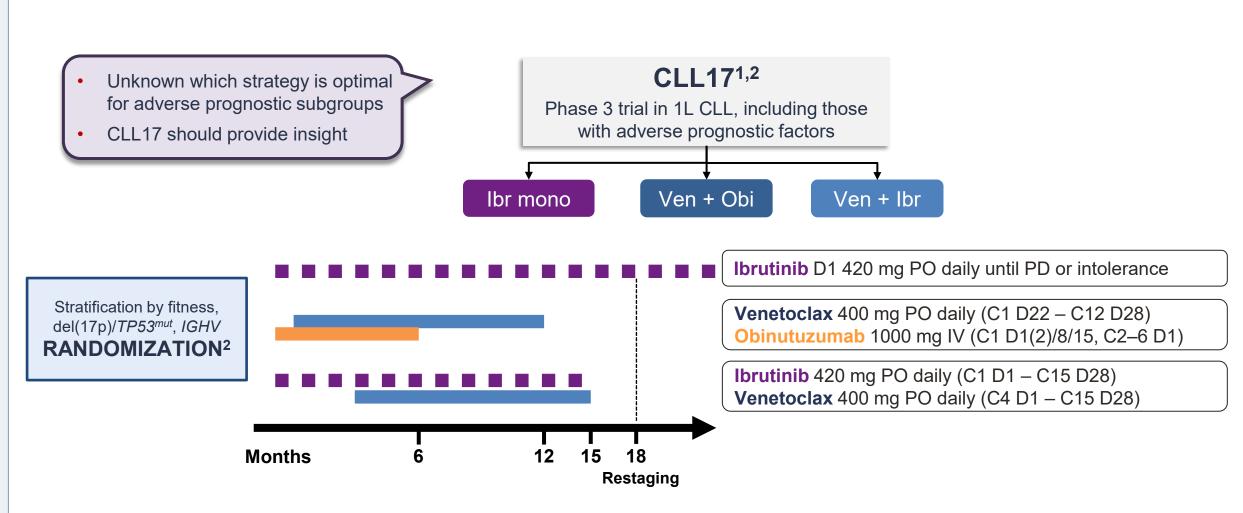
76-year-old female del(17p)/ <i>TP53^{mut}</i>			CONTINUOU	ONTINUOUS BTKI THERAPY		
IGHV-unmutated	cardiovasc	ular risk				
	V	Vhich BTKi?				
	Ibrutinib1 (N=136)Acalabrutinib2 (N=179)Zanubrutinib3 (N=240)					
Median age, years		73 (65-89)	70 (44-87)	70 (66-75)		
Median treatment d	luration, months	47	45.7	43.7		

Median treatment duration, months	47	45.7	43.7
Ongoing treatment, %	65	69.3	75
Discontinuations due to AE, %	19	12.3	15
Atrial fibrillation, % All grades	13*	6	5
Hypertension, % All grades / Grade ≥3	21 / 7*	7.3 / 2.8	17.5 / 9.2

These data represent patients without del(17p). This patient case features a patient with del(17p).

*N=135.

AE, adverse event; BTKi, Bruton's tyrosine kinase inhibitor; del(17p), deletion of the short arm of chromosome 17; mut, mutated; *IGHV*, immunoglobulin heavy chain variable region gene; N, number of patients; TN, treatment naïve; *TP53*, tumor protein p53.


Adapted from 1. Burger J et al. EHA 2018; Abstract PF343; 2. Sharman JP et al. EHA 2021; S148; 3. Munir T et al. EHA 2023; Abstract P639.

Satellite Symposium sponsored by BeiGene.

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

CLL17: comparing fixed duration with continuous therapy

1L, first-line; C, cycle; CLL, chronic lymphocytic leukemia; D, day; del(17p), deletion of the short arm of chromosome 17; lbr, ibrutinib; *IGHV*, immunoglobulin heavy chain variable region; IV, intravenous; mono, monotherapy; mut, mutation; Obi, obinutuzumab; PD, progressive disease; PO, oral; TN; treatment naïve; *TP53*, tumor protein p53; Ven, venetoclax.

1. ClinicalTrials.gov. NCT04608318. Available at: https://www.clinicaltrials.gov/ct2/show/NCT04608318 (accessed October 2023); 2. DCLLSG. CLL17 Trial. Available at: https://www.dcllsg.de/en/trial/cll17/CLL17_Synopsis_v1.2_20200923.pdf (accessed October 2023).

27 1023--MRC-003 | October 2023

TN CLL

Continuous therapy

BTKi:

- Ibrutinib
- Acalabrutinib
- Zanubrutinib

BCL2i:

- Venetoclax

Time-limited therapy

BCL2i + anti-CD20 antibody:

- Venetoclax + rituximab

*Speaker's own view. BCL2i, B-cell lymphoma-2 inhibitor; BTKi, Bruton's tyrosine kinase inhibitor; CD20, cluster of differentiation 20; CLL, chronic lymphocytic leukemia; R/R, relapsed/refractory.

Treatment choice in R/R CLL patients*

- del(17p)/TP53
- *IGHV* mutational status
- Bulky Disease

Patient factors

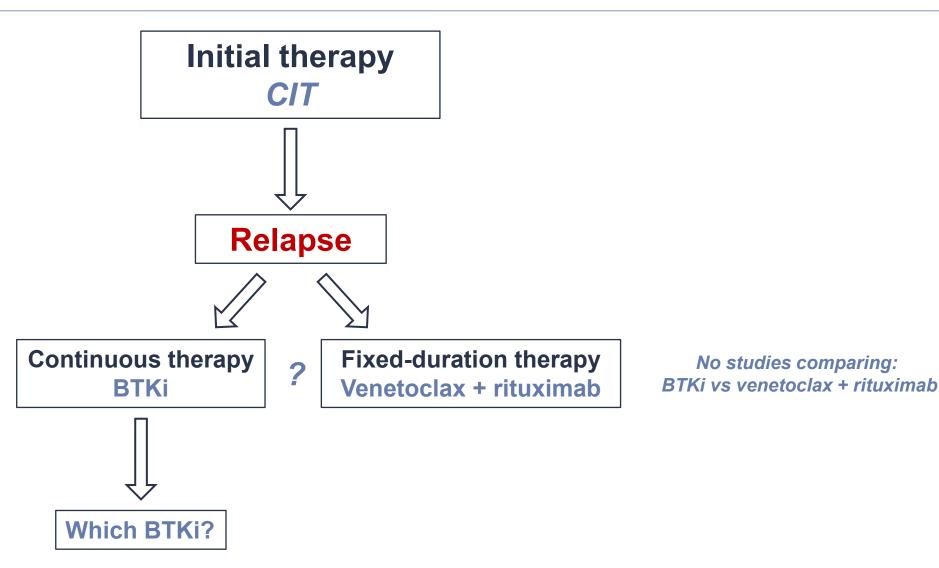
- Comorbidities
- Concomitant
 medications

Other factors

- Logistics/caregivers
- Patient preference
- Drug approval/ reimbursement

Previous therapy

- Type of initial therapy
- Resistance development
- Toxicities to previous treatments
- Early vs late relapse
- Intolerance
- Adequate sequencing


young patients \implies cellular therapy

*Speaker's own view.

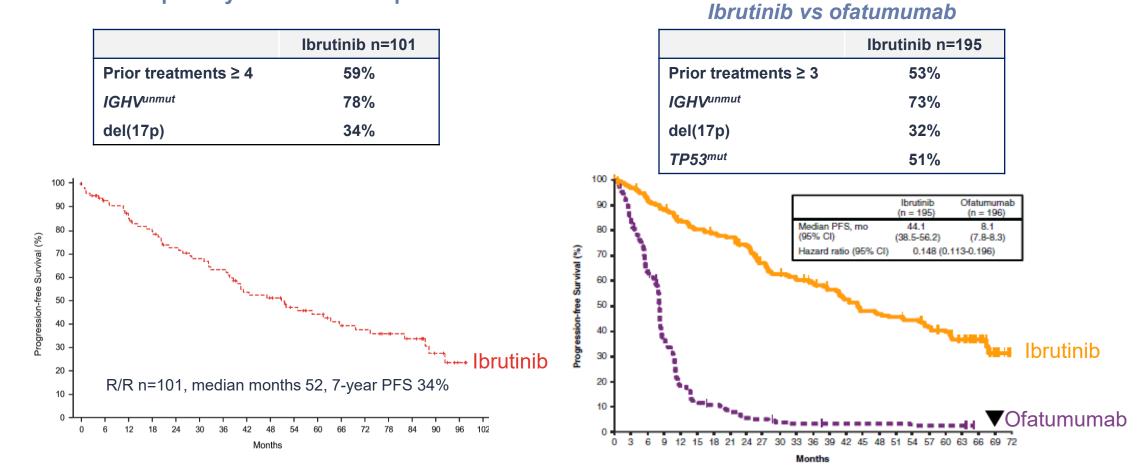
BCL2i, B-cell lymphoma-2 inhibitor; BTKi, Bruton's tyrosine kinase inhibitor; CD20, cluster of differentiation 20; CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17; *IGHV*, immunoglobulin heavy chain variable region; *TP53*, tumor protein p53; R/R, relapsed/refractory. Satellite Symposium sponsored by BeiGene.

Treatment choice in R/R CLL patients

BTKi, Bruton's tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; CIT, chemoimmunotherapy; R/R, relapsed/refractory.

Satellite Symposium sponsored by BeiGene.

R/R CLL


BTKi (ibrutinib) after CIT initial therapy

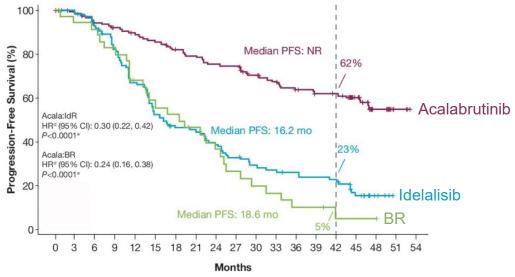
Final analysis from RESONATE study^{3,4} in R/R CLL

Up to 6 years of follow-up

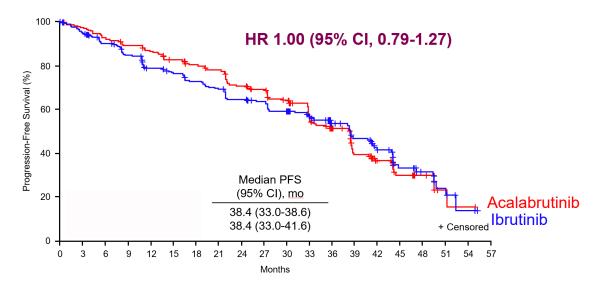
Pivotal Phase Ib/II PCYC-1102 study^{1,2} in R/R CLL Up to 8 years of follow-up

BTKi, Bruton's tyrosine kinase inhibitor; CI, confidence interval; CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17; IGHV, immunoglobulin heavy chain variable region; mo, months; mut, mutated; PFS, progression-free survival; TP53, tumor protein p53; unmut, unmutated; R/R, relapsed/refractory. 1. Byrd JC et al. N Engl J Med. 2013;369(1):32-42. 2. Byrd JC et al. Clin Cancer Res. 2020;26(15):3918-27 (figure adapted). 3. Byrd JC et al. N Engl J Med. 2014;371(3):213-23. 4. Munir T et al. Am J Hematol. 2019;94(12):1353-63 (figure adapted). Satellite Symposium sponsored by BeiGene.

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.



BTKi (acalabrutinib) after CIT initial therapy (1/2)


Phase III ASCEND study¹ Acalabrutinib vs idelalisib + rituximab or BR 4 years follow-up

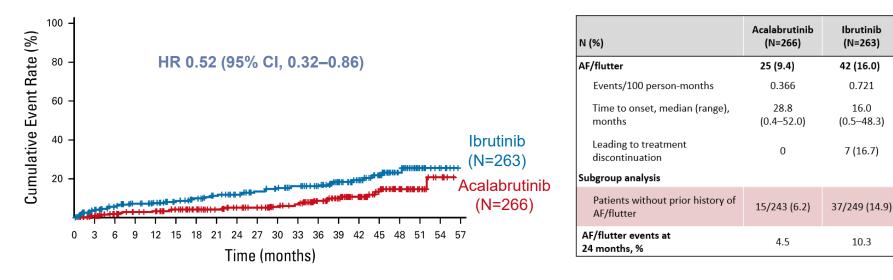
	Acalabrutinib n=101
Median prior Tx	1 (1-8)
IGHV ^{unmut}	70.3%
del(17p)	17.4%

Phase III ELEVATE-RR study² Acalabrutinib *vs* ibrutinib – only del(17p) or del(11q) 40.9 months median follow-up

	Acalabrutinib n=268	lbrutinib n=265
Median prior Tx	2 (1-9)	2 (1-12)
IGHV ^{unmut}	82%	89%
del(17p)	45.1%	45.3%

BR, bendamustine and rituximab; BTKi, Bruton's tyrosine kinase inhibitor; CI, confidence interval; CLL, chronic lymphocytic leukemia; del(11q), deletion of the long arm of chromosome 11; del(17p), deletion of the short arm of chromosome 17; HR, hazard ratio; *IGHV*, immunoglobulin heavy chain variable region; mo, months; NR, not reached; PFS, progression-free survival; Tx, treatment; unmut, unmutated; R/R, relapsed/refractory. 1. Jurczak W et al. ASCO 2022; Abstract 7538 (figure adapted). 2. Byrd JC et al. J Clin Oncol. 2021;39(31):3441-3452 (figure adapted).

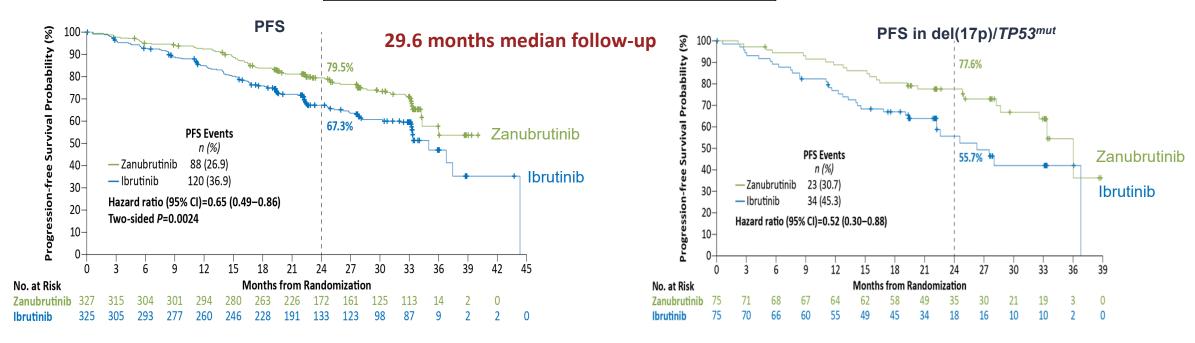
Satellite Symposium sponsored by BeiGene.


This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

BTKi (acalabrutinib) after CIT initial therapy (2/2)

Phase III ELEVATE-RR CLL

ITT Population	Acalabrutinib (N=266)	lbrutinib (N=263)	Difference in TEAE Incidence Rates [A-I], %	<i>P</i> -value [†]
Atrial fibrillation/flutter, all grades, n (%)	25 (9.4)	42 (16.0)	-6.6	0.0228
95% Cl*	(6.4, 13.5)	(12.0, 20.9)	(-12.2, -0.9)	
Infections, grade ≥3, n (%)	82 (30.8)	79 (30.0)	+0.8	0.8777
95% Cl*	(25.6, 36.6)	(24.8, 35.8)	(-7.1, +8.6)	
Richter's transformation, n (%)	10 (3.8)	13 (4.9)	-1.2	0.5131
95% CI*	(2.1, 6.8)	(2.9, 8.3)	(-4.7, +2.3)	

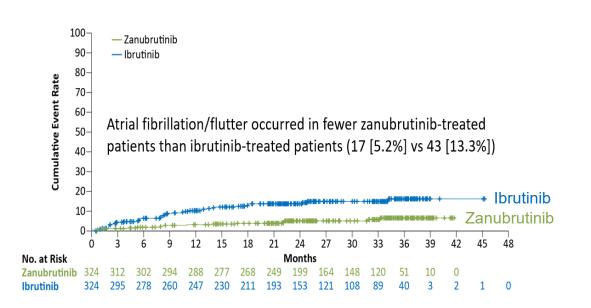

*95% CI based on Normal approximation (with use of Wilson's score). [†]Based on Cochran-Mantel-Haenzel test stratified by del(17p) status (yes vs no) and number of prior therapies (1-3 vs ≥4). AF, atrial fibrillation; BTKi, Bruton's tyrosine kinase inhibitor; CI, confidence interval; CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17; HR, hazard ratio; ITT, intention to treat; N, number of patients in each treatment arm; n, number of patients; R/R, relapsed/refractory; TEAE, treatment-emergent adverse event. Byrd JC et al. J Clin Oncol. 2021;39(31):3441-3452 (figure adapted). Satellite Symposium sponsored by BeiGene.

BTKi (zanubrutinib) after CIT initial therapy (1/2)

	Zanubrutinib n=327	lbrutinib n=325
Median prior Tx	1 (1-6)	1 (1-12)
IGHV ^{unmut}	73.1%	73.5%
del(17p) and/or <i>TP53^{mut}</i>	22.9%	23.1%

BTKi, Bruton's tyrosine kinase inhibitor; CI, confidence interval; CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17; *IGHV*, immunoglobulin heavy chain variable region; mut, mutated; n, number of patients; PFS, progression-free survival; *TP53*, tumor protein p53; Tx, treatment; unmut, unmutated; R/R, relapsed/refractory. Brown JR et al. N Engl J Med. 2023;388:319–32 (figures adapted). Satellite Symposium sponsored by BeiGene.

1023--MRC-003 | October 2023

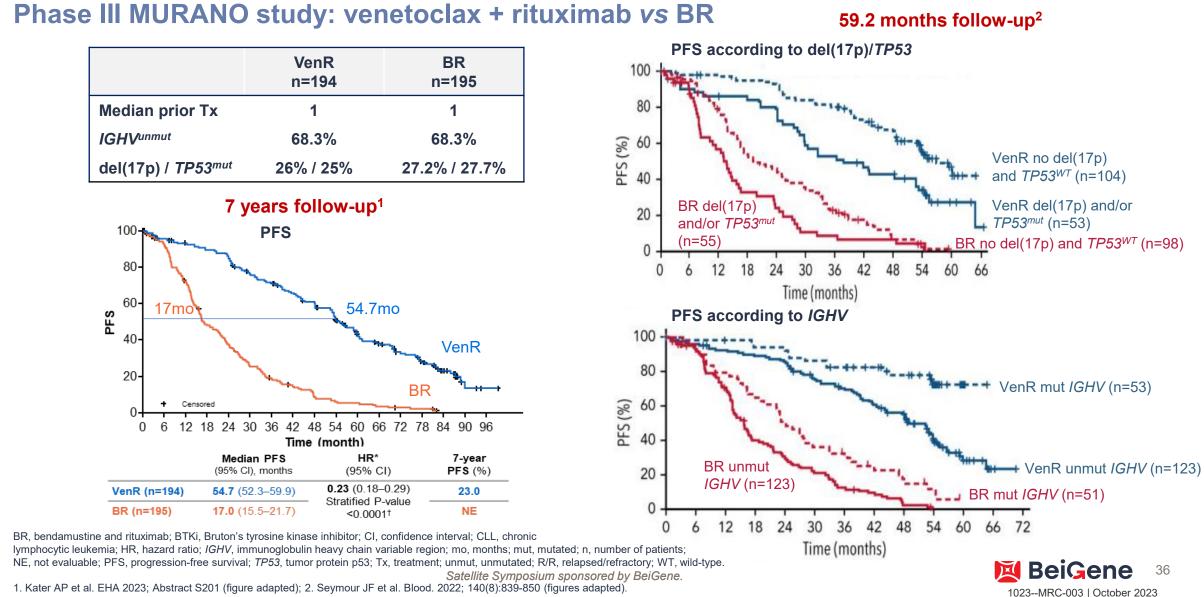

34

R/R CLL

BTKi (zanubrutinib) after CIT initial therapy (2/2)

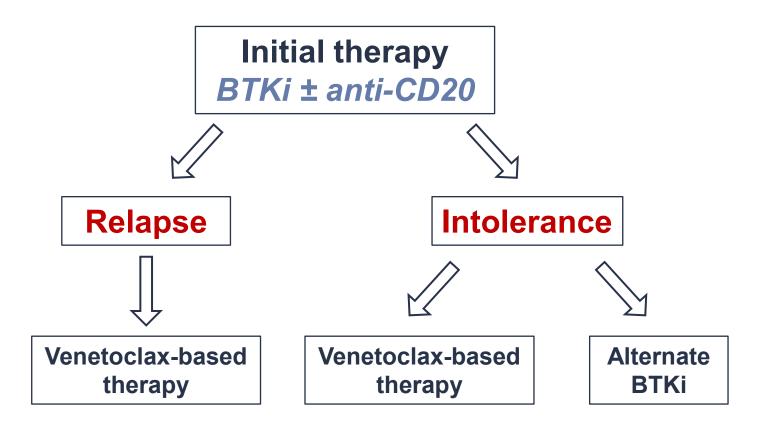
Phase III ALPINE study: zanubrutinib vs ibrutinib

	Any Gr	ade		Grade ≥3		
AESI, n (%)	Zanubrutinib (n=324)	lbrutinib (n=324)	Zanubi (n=3		Ibrutinib (n=324)	
≥1 AESI	294 (90.7)	300 (92.6)	186 (57.4)	184 (56.8)	
Anemia	50 (15.4)	53 (16.4)	7 (2.2)		8 (2.5)	
Atrial fibrillation and flutter	17 (5.2)	43 (13.3)	<mark>8 (</mark> 2	2.5)	13 (4.0)	
Hemorrhage	137 (42.3)	134 (41.4)	11 (3.4)	12 (3.7)	
Major hemorrhage	12 (3.7)	14 (4.3)	11 (3.4)	12 (3.7)	
Hypertension	76 (23.5)	74 (22.8)	49 (1	.5.1)	44 (13.6)	
Infections	231 (71.3)	237 (73.1)	86 (26.5)		91 (28.1)	
Opportunistic infection	7 (2.2)	10 (3.1)	5 <mark>(</mark> 1	5)	5 (1.5)	
Neutropenia ⁺	95 (29.3)	79 (24.4)	<mark>68 (</mark> 2	1.0)	59 (18.2)	
Secondary primary malignancies	40 (12.3)	43 (13.3)	22 (6.8)	17 (5.2)	
Skin cancers	21 (6.5)	28 (8.6)	7 (2.2)		4 (1.2)	
Thrombocytopenia	42 (13.0)	50 (15.4)	11 (3.4)	17 (5.2)	
Tumor lysis syndrome	1 (0.3)	0	1 (0).3)	0	
		Zanubrutinib (n=324)		lbrutinib (n=324)		
Cardiac adverse events		69 (21.3%)		90	6 (29.6%)	
Serious cardiac adverse events		6 (1.9%)		2	25 (7.7%)	
Cardiac adverse events leading to treatment discontinuation		1 (0.3)			14 (4.3)	



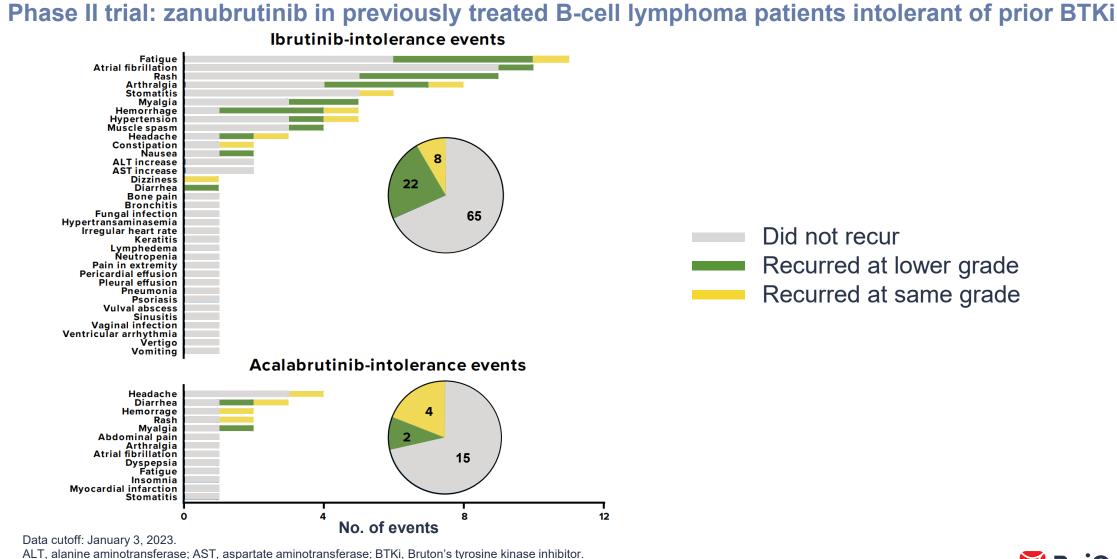
AESI, adverse events of special interest; BTKi, Bruton's tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; n, number of patients; R/R, relapsed/refractory. Brown JR et al. N Engl J Med. 2023;388:319–32 (figure adapted). Satellite Symposium sponsored by BeiGene.

R/R CLL


Venetoclax + rituximab after CIT initial therapy

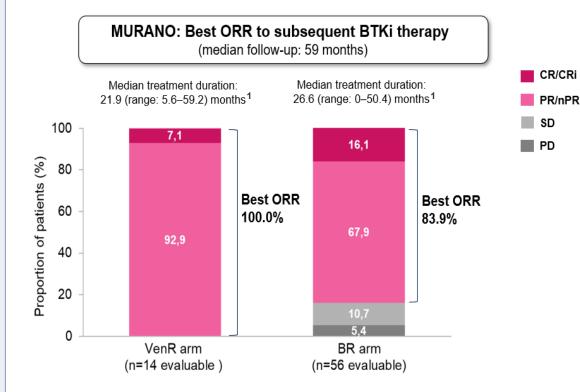
R/R CLL

1. Kater AP et al. EHA 2023; Abstract S201 (figure adapted); 2. Seymour JF et al. Blood. 2022; 140(8):839-850 (figures adapted).


Treatment choice in R/R CLL patients*

R/R CLL

Zanubrutinib in patients intolerant to acalabrutinib or ibrutinib


Satellite Symposium sponsored by BeiGene.

Shadman M et al. ICML 2023; Poster 345.

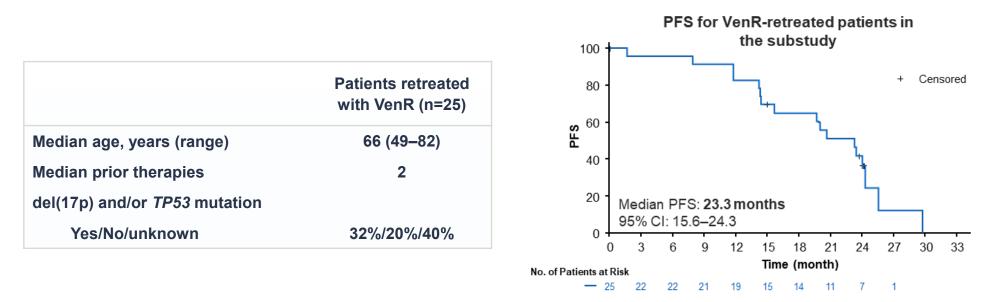
BeiGene 38 1023--MRC-003 | October 2023

BTKi after venetoclax-based therapy

BCRi treatment after venetoclax: Real-world experience – summary²⁻⁷

Analyses of ibrutinib regimens post-venetoclax regimen	Treatment	ORR
Ibr post-Ven, in 4 US centers	lbr post-Ven (n=25) All patients were Ibr-naive	14 (56%)

Analysis of BTKi/BCRi regimens post-venetoclax regimen	Treatment	ORR
BTKi post-Ven/VenR, in 2 Australian centers	Ibr (n=21) or zanubrutinib (n=2) post-Ven All patients were <u>BCRi</u> -naive	91%
BCRi post-Ven regimen (CORE Registry, US centers, EU/UK centers) (67% treated in real-world setting)	BTKi post-Ven in BTKi-naive (n=44)	83.9%
	BTKi post-Ven in BTKi-exposed (n=30) - BTKi-intolerant/-resistant	53.4% 70%/50%
	Pi3Ki post-Ven in BTKi-exposed (n=17)	46.9%
BCRi, CT/CIT, or other after Ven regimen (CORE Registry)	Next regimen post-Ven (n=23, including n=9 lbr and n=4 other BCRi)	60.8% (Ibr: 5/9)


BCL2i, B-cell lymphoma-2 inhibitor; BCRi, B cell antigen receptor inhibitor; BR, bendamustine and rituximab; BTKi, Bruton's tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; CIT, chemoimmunotherapy; CR, complete response; CRi, complete response with incomplete marrow recovery; CT, chemotherapy; EU, European Union; Ibr, ibrutinib; nPR, nodular partial remission; ORR, overall response rate; PD, progressive disease; PI3Ki, phosphoinositide 3-kinases; PR, partial response; R, rituximab; R/R, relapsed/refractory; SD, stable disease; UK, United Kingdom; US, United States; Ven, venetoclax. 1. Harrup R et al. ASH 2020; Abstract 3139. 2. Brown JR et al. ASH 2019; Abstract 4320. 3. Mato AR et al. Haematologica. 2018;26:3589–3596; 4. Lin VS et al. Blood. 2020;135:2266–2270; 5. Mato AR et al. Clin Cancer Res. 2020;26:3589–3596; 6. Mato AR et al. ASH 2019; Abstract 1756. 7. Seymour JF et al. ASH 2019: Abstract 355.

Venetoclax re-treatment

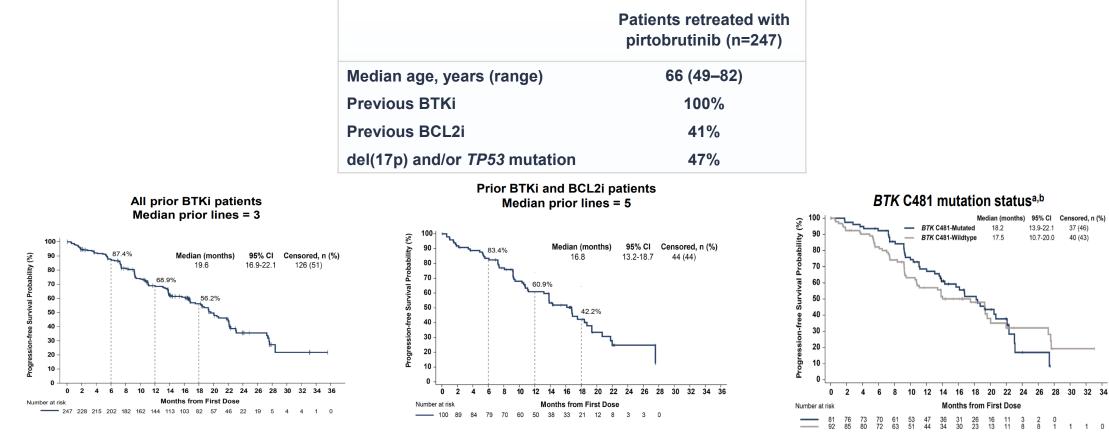
MURANO study: patient outcomes with venetoclax re-treatment

Phase II ReVenG study: Ven + Obi re-treatment in patients with relapsed CLL Ongoing!

CI, confidence interval; CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17; Obi, obinutuzumab; PFS, progression-free survival; R, rituximab; R/R, relapsed/refractory; *TP53*, tumor protein p53; Ven, venetoclax. Kater AP et al. EHA 2023; Abstract S201.

Double-refractory patients

Censored, n (%)


1023--MRC-003 | October 2023

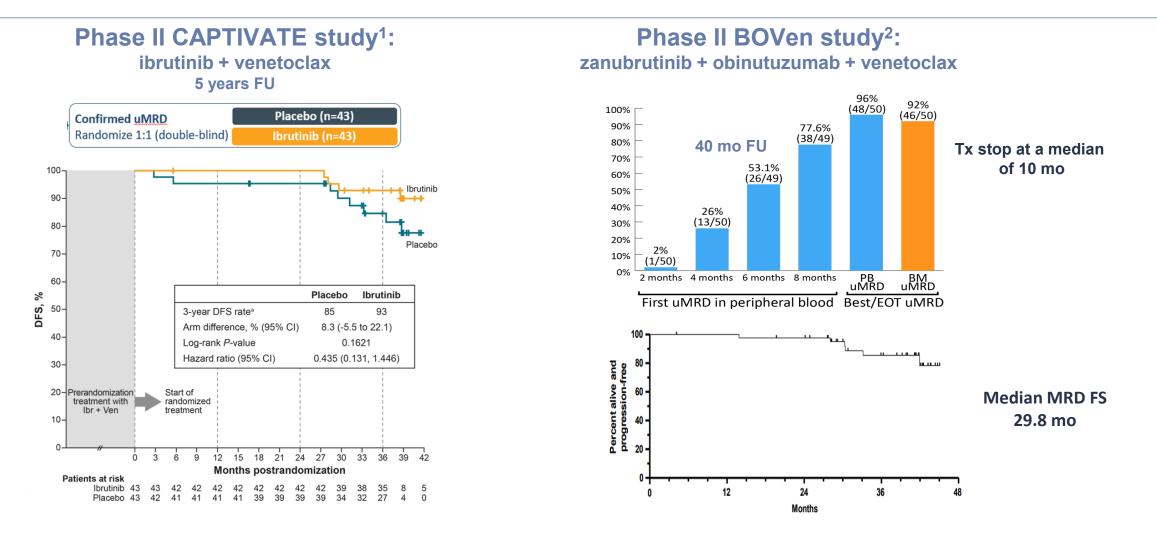
41

37 (46)

40 (43)

Phase I/II BRUIN study: pirtobrutinib in cBTKi pre-treated R/R CLL/SLL

• Median follow-up of 19.4 months for patients who received prior BTKi


 Median follow-up of 18.2 months for patients who received prior BTKi and BCL2i

BCL2i, B-cell lymphoma-2 inhibitor; (c)BTKi, (covalent) Bruton's tyrosine kinase inhibitor; CI, confidence interval; CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17; n, number of patients; R/R, relapsed/refractory; SLL, small lymphocytic leukemia; TP53, tumor protein p53. Woyach JA et al. Blood. 2022;140(Supplement 1):12427-28. BeiGene

A look at the future

Doublets or triplets? MRD-guided treatment?

Cl, confidence interval; CLL, chronic lymphocytic leukemia; DFS, disease-free survival; EOT, end of treatment; FS, free survival; FU, follow-up; Ibr, ibrutinib; mo, months; Tx, treatment; (u)MRD, (undetectable) minimal residual disease; n, number of patients. 1. Allan JN et al. ASH 2022; Abstract 92 (figure adapted); 2. Soumerai JD et al. ICML 2023 (figures adapted).

TN CLL

Satellite Symposium sponsored by BeiGene.

This slide includes data from different clinical trials. These data are meant for demonstration purposes only and are not meant for cross-trial comparison purposes.

A look at the future

CAR-T

▼Lisocabtagene maraleucel TRANSCEND CLL 004 study¹

- Double refractory: ORR 43%, CR 18%

BTK degrader

- NX-2127-001 Phase 1 study²
 - Prior BTKi treatment: objective response rate 33%
- BGB-16673-101 Phase 1 study³
- BGB-16673-102 Phase 1 study⁴

BTKi, Bruton's tyrosine kinase inhibitor; CAR-T, chimeric antigen receptor T cells; CLL, chronic lymphocytic leukemia; CR, complete response; ORR, overall response rate; R/R, relapsed/refractory. 1. Siddiqi T et al. ASCO 2023; Abstract 7501; 2. Mato A et al. ASH 2022. 3. Clinicaltrials.gov. NCT05006716. Available at: https://clinicaltrials.gov/ct2/show/NCT05006716 (accessed October 2023); 4. Clinicaltrials.gov. NCT05294731. Available at: https://clinicaltrials.gov/ct2/show/NCT05294731 (accessed October 2023).

Conclusions*.....still many questions

CLL treatment decision strictly depends on:

- patient and disease characteristics
- AE profile of target agents
- patient preference/logistics

BTKi

- more effective in high-risk patients
- easy to deliver
- resistance development
- zanubrutinib more effective than ibrutinib in R/R, better tolerated acalabrutinib better tolerated than ibrutinib in R/R, same efficacy

BCL2i

- strict monitoring
- benefit of treatment-free period

CIT

- no further role (toxicities, secondary MDS/AML)

Importance of adequate program from the start of therapy

- importance of sequencing

Importance of age

- age per se is not a limitation to receive a targeted agent
- young high-risk patients → allogeneic transplant

AE, adverse event; AML, acute myeloid leukaemia; BCL2i, B-cell lymphoma-2 inhibitor; BTKi, Bruton's tyrosine kinase inhibitor; CAR-T, chimeric antigen receptor T cells; CIT, chemoimmunotherapy; CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17; FD, fixed duration; *IGHV*, immunoglobulin heavy chain variable region; MDS, myelodysplastic syndrome; MRD, minimal residual disease; R/R, relapsed/refractory; *TP53*, tumor protein p53; Tx, treatment.

..

- No randomized trials yet on FD vs continuous Tx (CLL17 results)
- MRD-oriented therapy?

Unmet clinical needs

- Lack of clinical trials on sequencing
- Mostly real-life data/small populations
- Lack of knowledge on the impact of genetics beyond TP53/IGHV/del(17p) on the outcomes of current therapies?
- CAR-T role

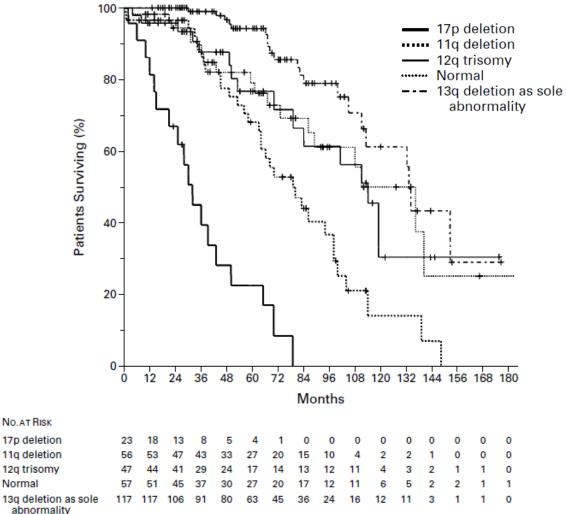
Molecular mapping of CLL and its impact on outcome

Xose S. Puente, PhD

Universidad de Oviedo Oviedo, Spain

Disclosures

- •Honoraria: BeiGene
- **Research funding**: Spanish National Research Agency, AECC, Fundación La Caixa
- Advisory boards: None
- Speakers' bureau: None
- Other: None

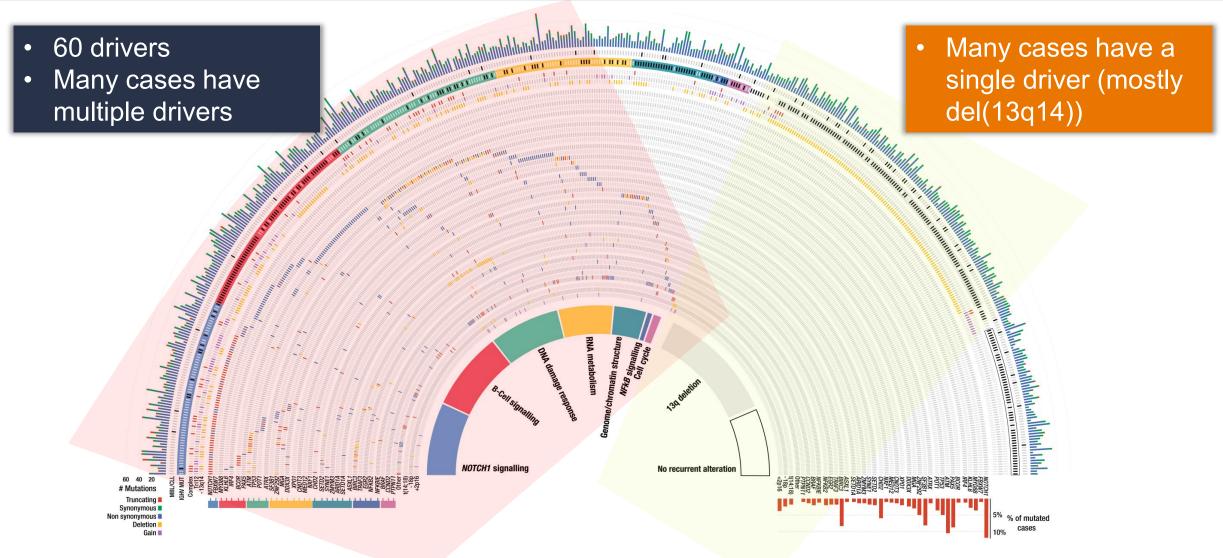


Introduction (Speaker's own view)

- New treatments for CLL have become available in past years, like the BTKis
- Such treatments have been improved by next generation versions of these drugs
- First steps towards personalization of CLL therapy are being made, for example based on TP53^{mut} / del(17p)
- Current research shows that CLL genetics is more complex than *TP53^{mut}* / del(17p) / *IGHV* status, and it impacts outcomes
- These new insights may provide new "handles" to further personalize CLL treatment

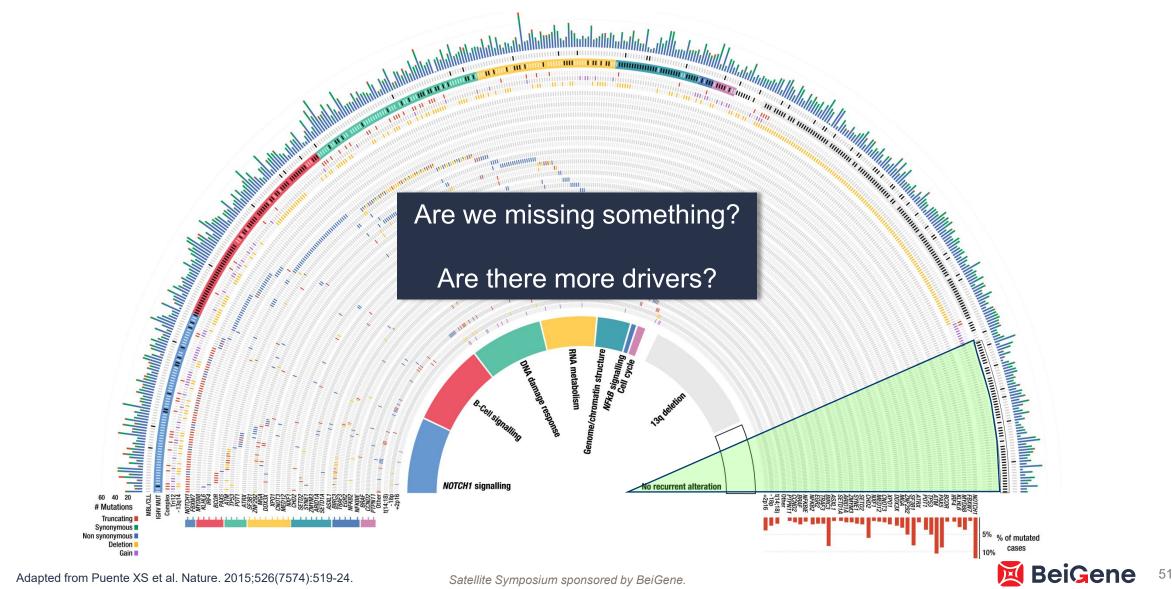
Genomic aberrations and CLL progression

17p deletion \rightarrow *TP53* 11q deletion $\rightarrow ATM$ 13q deletion \rightarrow *miR-15/16* Chromosome 12 trisomy

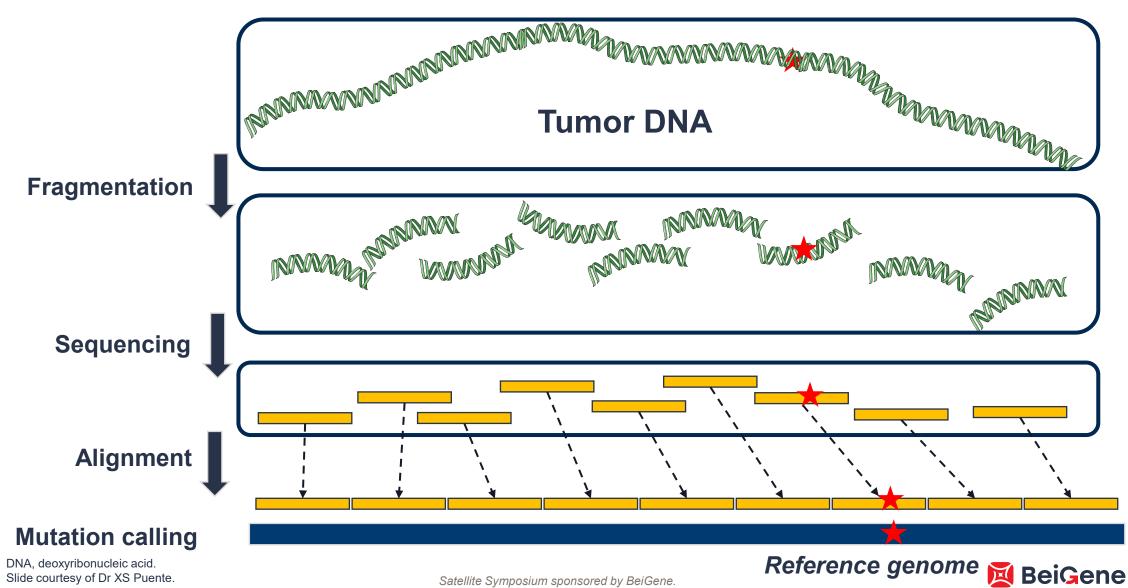

NO.AT RISK

ATM, ataxia-telangiectasia mutated (gene); CLL, chronic lymphocytic leukemia; 11q deletion, deletion of the long arm of chromosome 11; 13q deletion, deletion, deletion of the long arm of chromosome 13; 17p deletion,			
deletion of the short arm of chromosome 17; miR, microRNA tumor suppresso	pr located at 13q14 region deleted in CLL; <i>TP53</i> , tumor protein p53.		
Döhner H et al. N Engl J Med. 2000;343:1910-1916.	Satellite Symposium sponsored by BeiGene.	🔀 BeiGene	

49


Genomic aberrations and CLL progression

CLL, chronic lymphocytic leukemia; del(13q14), deletion in the long arm of chromosome 13, at position 14 (13q14) region. Adapted from Puente XS et al. Nature. 2015;526(7574):519-24. Satellite Symposium sponsored by BeiGene.



10% of cases are driver-less tumors / 1

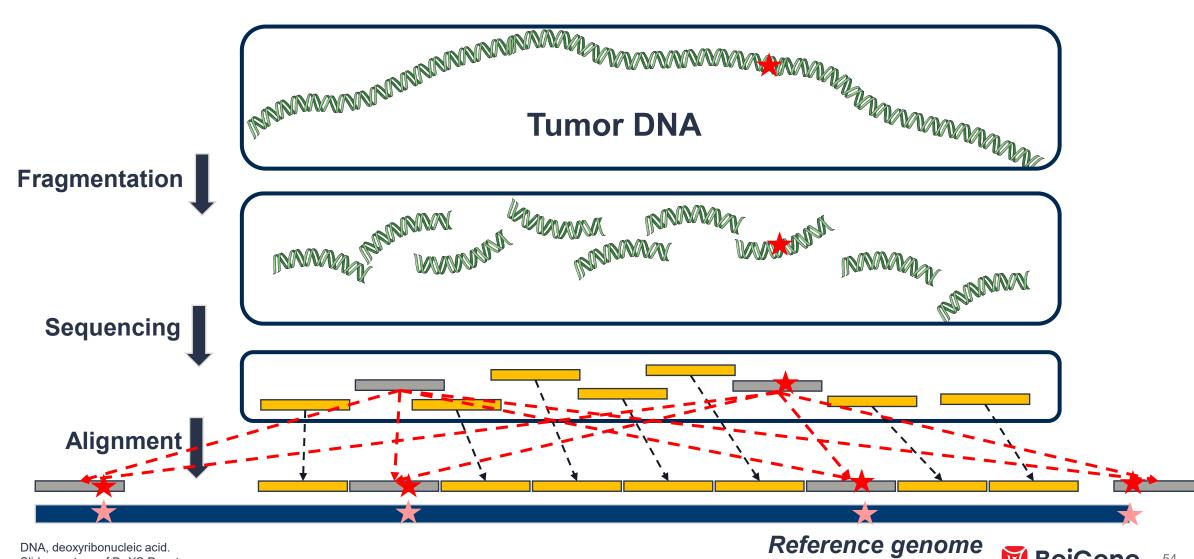
0923--MRC-097 | October 2023

Identification of somatic mutations from short reads

Satellite Symposium sponsored by BeiGene.

0923--MRC-097 | October 2023

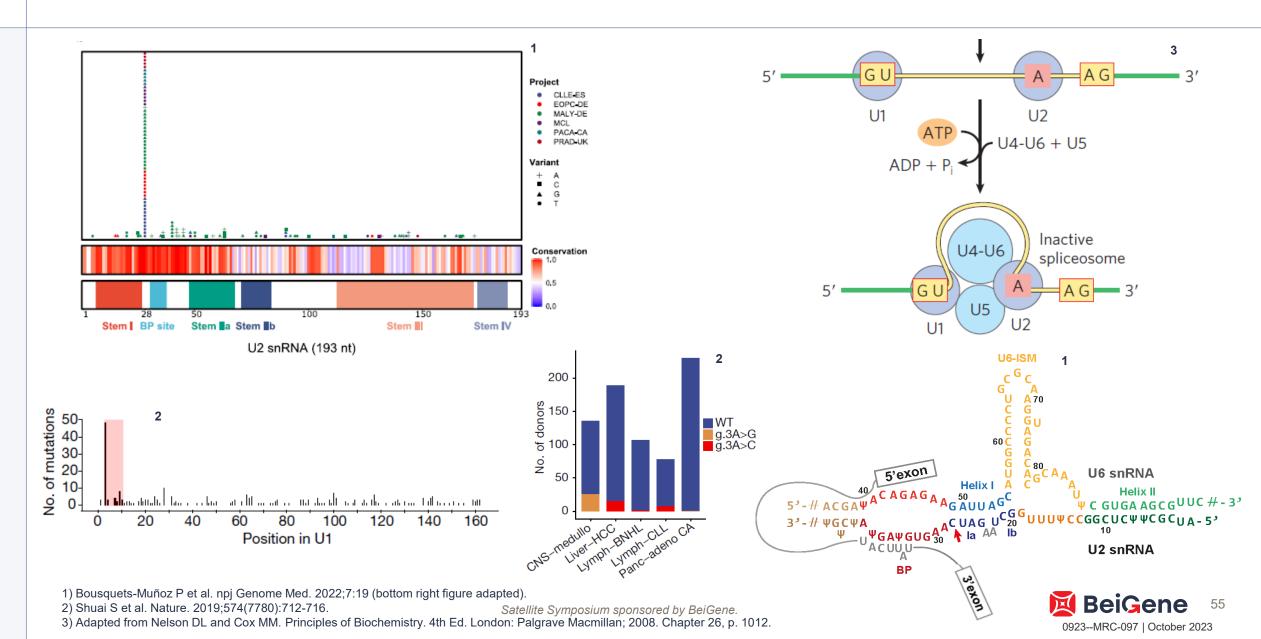
52


How much of the genome is visible?

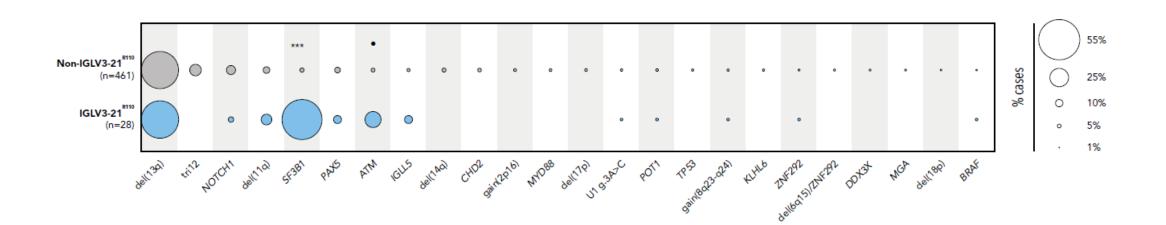
Slide courtesy of Dr XS Puente.

Identification of somatic mutations from short reads: repetitive elements

DNA, deoxyribonucleic acid. Slide courtesy of Dr XS Puente.

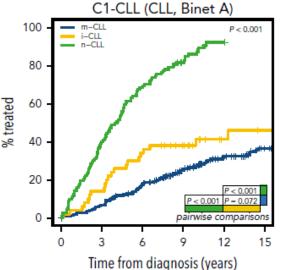

Satellite Symposium sponsored by BeiGene.

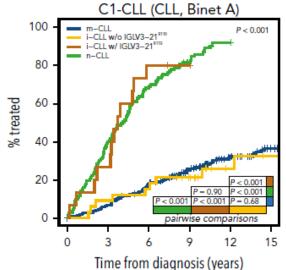
BeiGene 0923--MRC-097 | October 2023


54

) [

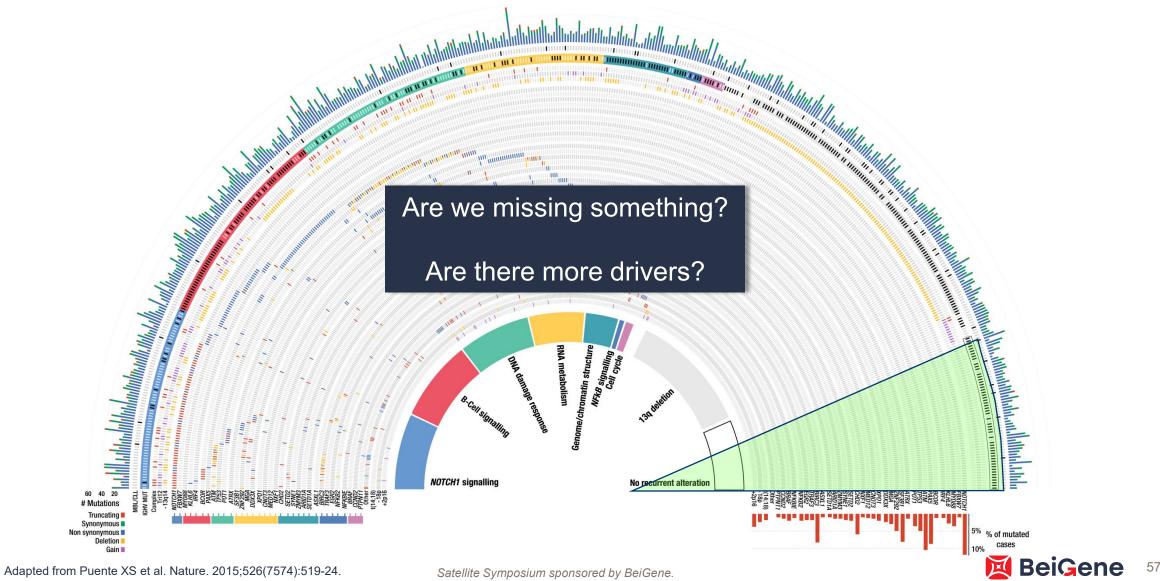
Recurrent mutations in repetitive small nuclear RNAs (U1 and U2)




IGLV3-21^{R110}: unfavorable prognosis

3 epigenetic CLL subtypes (correlate with IGHV mutational status and patient outcome):

- m-CLL: memory-like CLL (good prognosis)
- i-CLL: intermediate CLL (intermediate prognosis)
- n-CLL: naïve-like CLL (poor prognosis)
- IGLV is repetitive
- IGLV3-21^{R110} enriched in intermediate CLL (38%)
- i-CLLs with 21^{R110} behave as n-CLL



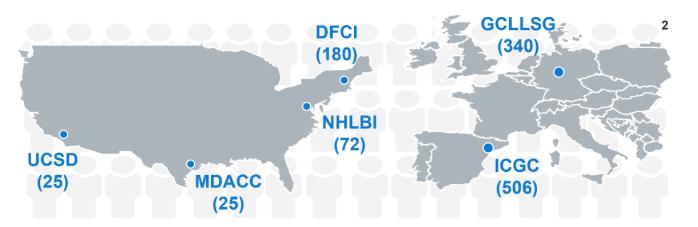
CLL, chronic lymphocytic leukemia; IGLV, immunoglobulin lambda variable chain. Nadeu F et al. Blood. 2021;137(21):2935-2946.


10% of cases are driver-less tumors / 2

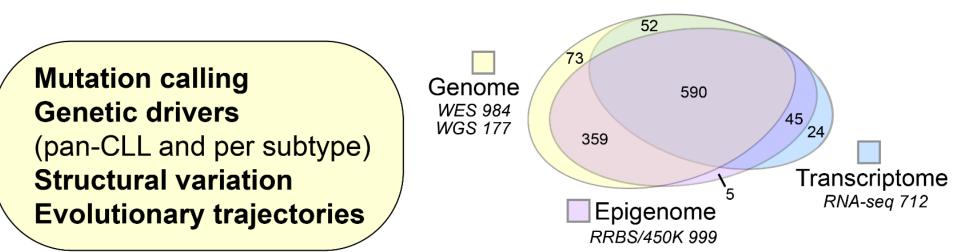
0923--MRC-097 | October 2023

CLL 500: are we identifying all driver genes?

- Driver genes are identified using statistics
- If a gene/alteration frequency is higher than by chance, there is selection
- Power to detect drivers depends on mutation burden and number of cases

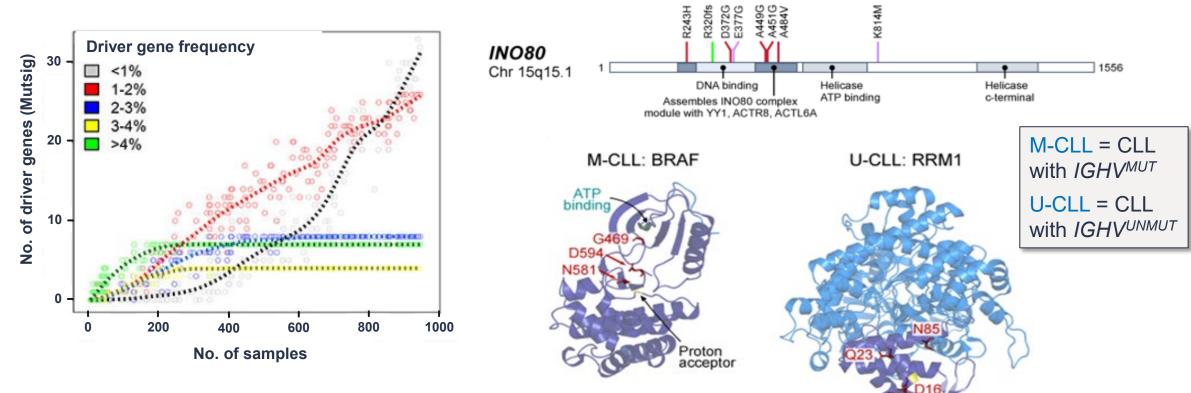

Left hand graphic: speaker's own; right hand graphic: Lawrence MS et al. Nature. 2014;505:495-501.

Satellite Symposium sponsored by BeiGene.


0923--MRC-097 | October 2023

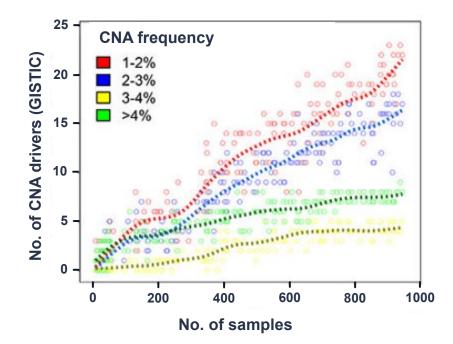
The CLL-1100 project¹

- Joined ICGC cohort:
 - ICGC-CLL
 - Dana Farber Cancer Institute
 - German CLL Study Group
 - NHLBI, MDACC, UCSD


Multiomic data from 1148 CLL patients

CLL, chronic lymphocytic leukemia; DFCI, Dana Farber Cancer Institute; GCLLSG, German CLL Study Group; ICGC, International Cancer Genome Consortium; MDACC, MD Anderson Cancer Center; NHLBI, National Heart, Lung, and Blood Institute; UCSD, University of California San Diego; WES, whole-exome sequence; WGS, whole-genome sequence. (1) Knisbacher BA et al. Blood. 2020;136(1):3; (2) <u>cllmap.org</u> (last access: October 2023). Satellite Symposium sponsored by BeiGene.

Increased ability to detect driver events



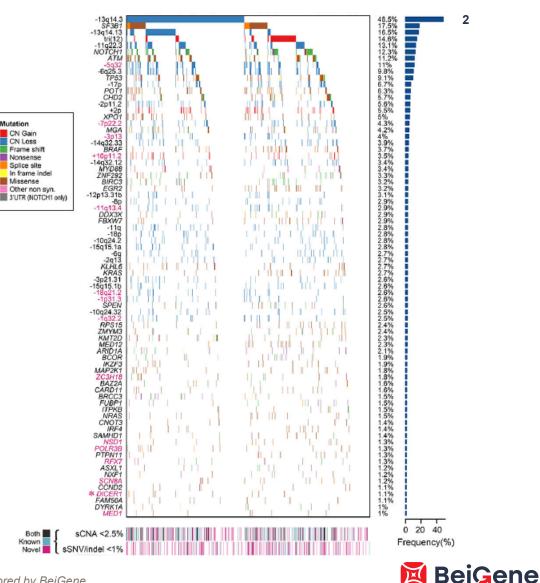
- Saturation for detecting driver genes at >2% frequency
- Detection of additional drivers based on spatial clustering of mutations
- 46 out of 88 driver genes were new in CLL

CLL, chronic lymphocytic leukemia; M-CLL, CLL with mutated *IGHV*; RRM1, ribonucleoside-diphosphate reductase large subunit; U-CLL, CLL with unmutated *IGHV*. Adapted from Knisbacher BA et al. Nat Genet. 2022;54(11):1664-1674. *Satellite Symposium sponsored by BeiGene.*

Increased ability to detect driver events

- **Deletions** Amplifications Focal Arm-level Focal Arm-level 1p36.11 (2% [5] MAP3K6 1p31.3 (2.7% [4] PDE4B 1q32.2 (2.8% [3]) 2p (5.5%) 2q13 (2.4% [3] BCL2L11, ANAPC1) - 3p22.3 (2.3% [1] PDCD6IP) 3p13 (4.1% [2] FOXP1, MITF) 4p (1.5%) 5q32 (11.9% [4] RPS14, ARSI 6p21.32 (2% [2]) 6q (2.8%) - 7p22.2 (4.6% [55]) - 7q11.23b (2% [2]) 8p (2.8%) - 8p11.23 (3.3% [1] BRF2) 8q (2%) 11q13.4 (3.3% [3] UCP2, UCP3) 11q (3%) Tri(12) (14.2%) 11q22.3 (13.3% [6] ATM) 13q14.3 (47.2% [28]) 16p11.2 (3.8% [5] EIF3CL) 17q (1.6%) 17p (7.1%) 18p (3%) - 17p13.1 (1.9% [6] *TP53)* - 17q23.3 (2.4% [6] *DDX5, POLG2*) 19p13.3 (2.6% [3]) 19q (1.2%) 18q21.2 (2.7% [4] TCF4) 20p (1.4%) 10 5 0 5 10 -log10(q-value) 10 5 0 5 10 -log10(q-value)
 - BeiGene 61 0923--MRC-097 | October 2023

CD74, TCOF1


CNA saturation at >3% frequency

• Higher sensitivity for detection of focal events

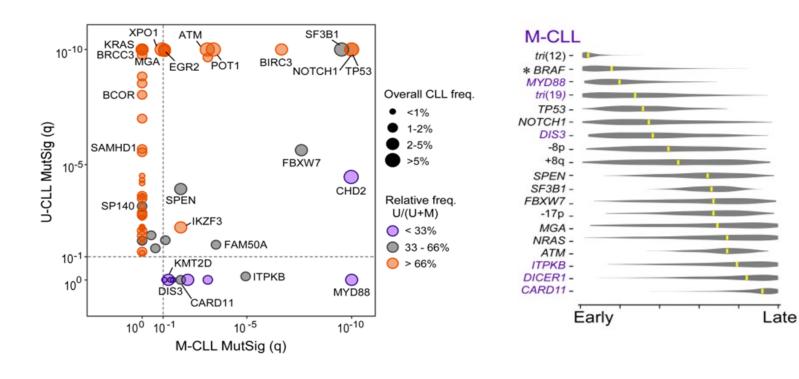
CLL, chronic lymphocytic leukemia; CNA, copy number alterations. Adapted from Knisbacher BA et al. Nat Genet. 2022;54(11):1664-1674.

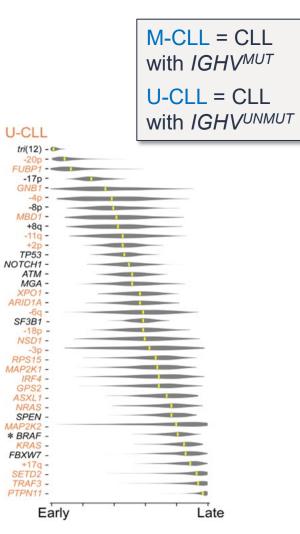
CLL map with 1100 cases¹

- 202 candidate drivers (109 new)
- •Most of them in fewer than 3% of patients

62

0923--MRC-097 | October 2023


CLL, chronic lymphocytic leukemia. (1) Knisbacher BA et al. Blood. 2020;136(1):3; (2) Adapted from Knisbacher BA et al. Nat Genet. 2022;54(11):1664-1674. Satellite Symposium sponsored by BeiGene.

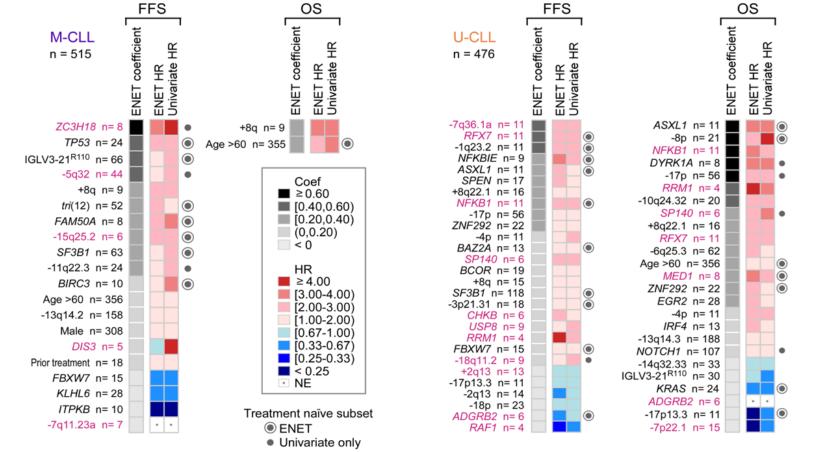

Satellite Symposium sponsored by BeiGene.

Mutation CN Gain CN Loss

Differences between U-CLL and M-CLL

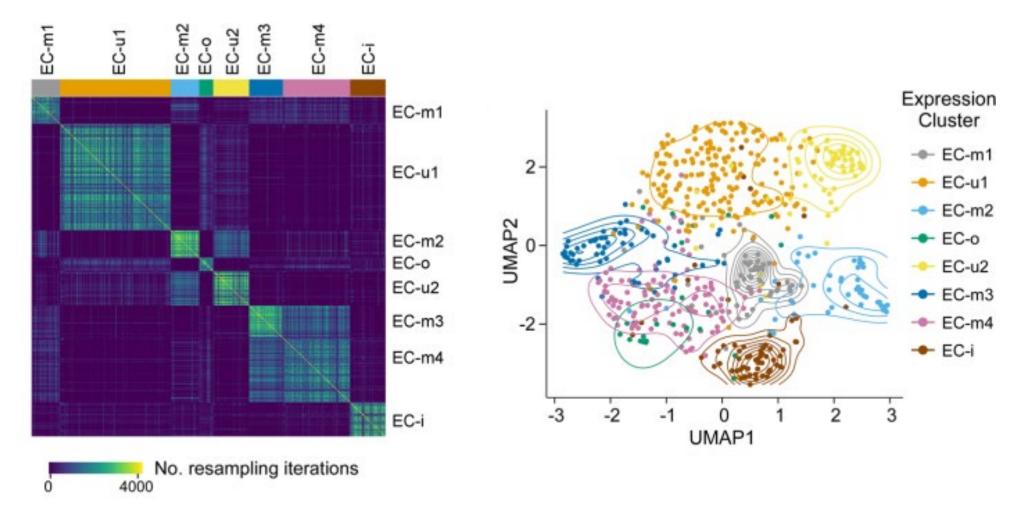
- 76% of driver genes were either specific or more frequent in U-CLL
- 3.8% patients lacked drivers (6.6% M-CLL vs. 0.6% U-CLL)
- >85% of drivers were subclonal (late events) \rightarrow impact on diagnosis

Long tail of drivers at very low frequency

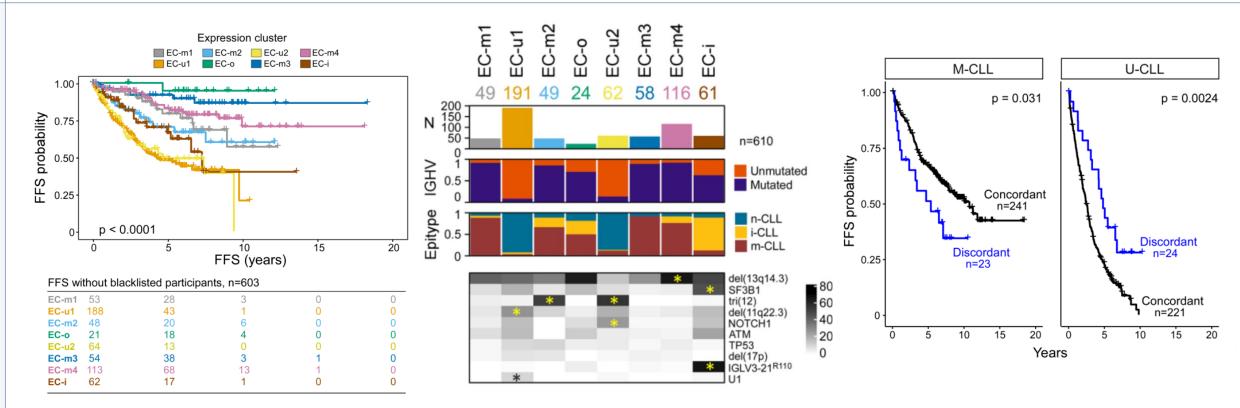

Highly heterogeneous pathology

Adapted from Knisbacher BA et al. Nat Genet. 2022;54(11):1664-1674.

Clinical impact


- U-CLL had more genes with impact on failure-free or overall survival than M-CLL (41 vs. 18)
- TP53 mutation in absence of 17p loss is not associated with adverse outcome

CLL, chronic lymphocytic leukemia; del(17p), deletion of the short arm of chromosome 17 M-CLL, CLL with mutated *IGHV*; *TP53*, tumor protein p53; U-CLL, CLL with unmutated *IGHV*. Adapted from Knisbacher BA et al. Nat Genet. 2022;54(11):1664-1674. Satellite Symposium sponsored by BeiGene.


Expression analysis defines 8 expression clusters

EC, expression cluster; UMAP, uniform manifold approximation and projection. Adapted from Knisbacher BA et al. Nat Genet. 2022;54(11):1664-1674.

Expression clusters are associated with *IGHV*-status, driver mutations and progression

- 8% of samples are in expression clusters not corresponding to the major *IGHV* mutation group (i.e., M-CLLs in EC-u groups)
- Discordant cases have different FFS than concordant

CLL, chronic lymphocytic leukemia; EC, expression clusters; FFS, failure free survival; *IGHV*, immunoglobulin heavy chain variable region; M-CLL, CLL with mutated *IGHV*; U-CLL, CLL with unmutated *IGHV*.

Adapted from Knisbacher BA et al. Nat Genet. 2022;54(11):1664-1674.

Summary (speaker's own)

• Number of driver alterations expanded to 202:

- >96% of CLL tumors have at least one driver alteration

• Most alterations are present in <2% of cases:

- Many have clinical impact (mostly in U-CLL, i.e., CLL with IGHVUNMUT)

• 8 Expression Clusters define subtypes of patients:

- Different prognosis
- IGHV-subtype prognosis affected by expression cluster

Conclusion and future implications

- This research refines our current disease paradigm and establishes a new spectrum of events contributing to leukemogenesis that may have implications beyond prognostication¹.
- The driver mutations identified in this study will allow the design of specific gene panels for²:
 - Better patient stratification
 - Understanding differences in response to therapy, and
 - Identifying molecular targets that might benefit specific subgroups of patients
- In future, this molecular foundation may allow for better prediction of response to therapy or provide the basis for rational combination of novel agents¹.

Universidad de Oviedo / IUOPA

Ander Díaz Navarro Jesús Gutiérrez-Abril Pablo Bousquets Muñoz Sara López Tamargo Xose S. Puente

Hospital Clínic Barcelona / IDIBAPs

Elías Campo Iñaki Martín Subero Ferran Nadeu Martí Durán-Ferrer Julio Delgado

Broad Institute/

Dana-Farber Cancer Institute

Gaddy Getz Cathy Wu **Binyamin Knisbacher** Ziao Lin Cynthia Hahn Chip Stewart Donna Neuberg

Ulm University

Stephan Stilgenbauer

BROAD

FUNDACIÓN

UNIÓN EUROPEA MINISTERIO **DE CIENCIA E INNOVACIÓN** FONDO EUROPEO DE AGENCIA ESTATAL DE INVESTIGACIÓN DESARROLLO REGIONAI Una manera de hacer Europa universität UUUM *Fundación Bancaria* "laCaixa" INVESTIGACIÓN CONTRA EL CÁNCER

Closure and farewell

Overall session summary (Speaker's own)

- □ CLL treatment choice is driven by multiple patient, disease and drug factors.
- □ Various new continuous and fixed duration therapy options are emerging.
- □ Treatment sequencing must be considered from the beginning.
- □ There is a growing understanding of CLL genetics and its clinical impact.
- These exciting developments are driving increasing personalization of therapy, with the goal of better clinical outcomes, for CLL patients.

Expert-led education on new developments in hemato-oncology

- Webinars
- Patient cases
- Expert interaction
- Topical insights

Explore now

at BeiGeneius.com or at the BeiGene booth

BeiGeneius is an educational program sponsored by BeiGene. This program is addressed to HCPs only. CME credits are not available at BeiGeneius.